金刚石可以改善氮化镓器件的冷却效果

发表时间:2021-11-22 14:34作者:化合积电网址:http://www.csmc-semi.com

将氮化镓(GaN)等宽带隙材料与金刚石导热材料集成在一起的室温键合技术可以提高GaN器件的冷却效果,并通过更高的功率水平、更长的器件寿命、更高的可靠性和更高的性能来提高性能降低制造成本。该技术可以用于无线发射机、雷达、卫星设备和其他大功率和高频电子设备。

该技术称为表面活化键合,该技术在高真空环境中使用离子源首先清洁GaN和金刚石的表面,然后通过创建悬空键来激活表面。向离子束中引入少量硅有助于在室温下形成牢固的原子键,从而允许GaN与单晶金刚石直接键合,从而可以制造高电子迁移率晶体管(HEMT)。

最终形成的从GaN到单晶金刚石的界面层厚度仅为4纳米,通过消除纳米金刚石生长留下的低质量金刚石,使散热效率2倍于目前最先进的GaN对金刚石的散热效率。目前,钻石是通过使用晶体生长技术与GaN集成在一起的,该技术可以在界面附近产生更厚的界面层和低质量的纳米晶金刚石。此外,新工艺可以使用表面激活的键合技术在室温下完成,从而降低了施加到器件上的热应力。


佐治亚理工学院Samuel Graham教授说:“这项技术使我们能够将高导热率的材料放置在氮化镓中更靠近有源器件区域的位置。这种性能使我们能够最大化GaN on Diamond的性能。这将使工程师能够定制设计未来的半导体,以实现更好的多功能操作。”

这项与日本名清大学和早稻田大学的科学家合作进行的研究2月19日发表在ACS Applied Materials and Interfaces杂志上。这项工作得到了美国海军研究办公室(ONR)的多学科大学研究计划(MURI)项目的支持。

对于在小型设备中使用诸如GaN之类材料的大功率电子应用,散热可能是施加在设备上的功率密度的限制因素。工程师们试图通过增加一层导热率比铜高五倍的金刚石来散热。

但是,当在GaN上生长金刚石薄膜时,必须在其上植入直径约30纳米的纳米晶体颗粒,并且该纳米晶体金刚石层的导热系数很低,这增加了进入块状金刚石薄膜的热流阻力。另外,生长发生在高温下,这会在所得的晶体管中产生应力的裂纹。



Graham说:“在目前使用的生长技术中,只有在距界面几微米远的地方,才能真正达到微晶金刚石层的高导热性能。界面附近的材料只是不具有良好的热性能。这种键合技术使我们可以从界面处的超高导热金刚石开始。”

通过创建更薄的界面,表面激活的键合技术使散热更接近GaN热源。

“我们的键合技术使高导热率的单晶金刚石更接近GaN器件中的热点,这有可能重塑这些器件的冷却方式,”佐治亚州理工学院的Zhe Cheng博士说, “而且由于键合是在室温附近进行的,因此我们可以避免会损坏器件的热应力。”

热应力的降低可能是显着的,采用室温技术可以从900 MPa降至小于100 MPa。Graham说:“这种低应力键合使金刚石的厚层可以与GaN集成在一起,并为金刚石与其他半导体材料的集成提供了一种方法。”

除了GaN和金刚石外,该技术还可以与其他半导体(例如氧化镓)和其他导热体(例如碳化硅)一起使用。Graham说,该技术在需要粘接薄的界面层的电子材料上具有广泛的应用。



在未来的工作中,研究人员计划研究其他离子源,并评估可以使用该技术集成的其他材料。
Graham说:“我们有能力选择加工条件以及衬底和半导体材料,从而为宽带隙器件设计异质衬底。这使我们可以选择材料并进行集成,以最大限度地提高电、热和机械性能。”

热门文章

2021

12-04

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业。这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,是近20余年以来研制微波功率器件最理想的半导体材料。随着外延材料晶体质量的不断提高和器件工艺的不断改进,基于GaN基材料研制的微波、毫米波器件和电路,工作频率越来越高,输出功率越来越大...

2021

12-03

与氮化镓(GaN)相比,超宽禁带半导体-金刚石具有更高的禁带宽度、更高的热导率和相当的载流子迁移率,在大功率微波毫米波功率器件领域有着重要的应用潜力。随着基于GaN微波功率器件向更小尺寸、更大输出功率和更高频率的方向发展,“热”的问题越来越突出,逐渐成为制约器件向更高性能提升的重要问题之一。采用高热导率金刚石作为高频、大功率GaN器件的衬底,可以降低GaN大功密器件的自热效应对功率和效率等指...

2021

12-01

随着GaN基电子功率转化器的功率密度增加和尺寸减小,器件的散热成为实际应用的关键问题。金刚石在所有天然材料中具有最高的热导率,可用于与 GaN 集成以消散 AlGaN/GaN 高电子迁移率晶体管 (HEMT) 通道产生的热量。目前的金刚石基 GaN 晶片(GaN-on-diamond)制备技术包括三种策略:GaN与金刚石结合、金刚石在GaN上的外延生长和GaN在金刚石上的外延生长。由于大的晶...

2021

11-30

随着航天技术的发展,空间电子、微波、激光等高热流密度设备的散热问题日益突出。在宇宙空间运行的航天器,向阳面温度高达130℃,背阳面温度-150℃,另外由于真空、辐照、原子氧的影响,航天器热控制系统对耐受空间环境极限的高导热材料需求强烈,高导热金刚石能够很好的契合上述空间需求。金刚石是一种超宽禁带半导体材料,其禁带宽度为5.5 eV,比GaN、SiC等宽禁带半导体材料还要大。如下表所示,金刚石...

2021

11-29

相比于天然金刚石,人造金刚石在品质、价格、环保、科技等方面具有明显竞争优势,被认为是最有希望制备下一代高功率、高温、高频和低功率损耗的电子器件的材料。人造金刚石是指用人为方法使非金刚石转变为金刚石,宝石级别的人造金刚石又称为人造钻石、培育钻石等。金刚石是自然界最坚硬的物质,人造金刚石具有硬度高、耐磨性好、耐腐、透光性强等特点,广泛应用在精密机械、冶金、石油开采、地质勘探、半导体以及电子等多个...
新闻中心
>行业动态


产品中心
>金刚石热沉片
>晶圆级金刚石
>硅基氮化铝
>金刚石基氮化铝

联系我们
>联系我们


E-mail:sales@csmc. tech Telephone:0086-13859969306
厦门总部:福建省厦门市集美区灌口大道253号
韩国分公司:Changchundoing Shinchon-ro 2nd floor
2108 ho Seodaemoon-gu Seoul, Korea
上海办事处:上海市嘉定区沪宜公路1168号环球大厦1410室

点击这里给我发消息