设为首页 | 收藏本站

金刚石基氮化镓,掀起高功率微波射频技术革命

发表时间:2021-12-04 15:02作者:化合积电网址:http://www.csmc-semi.com

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业。这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,是近20余年以来研制微波功率器件最理想的半导体材料。随着外延材料晶体质量的不断提高和器件工艺的不断改进,基于GaN基材料研制的微波、毫米波器件和电路,工作频率越来越高,输出功率越来越大。

随着基于氮化镓(GaN)材料的微波功率器件向更小尺寸、更大输出功率和更高频率的方向发展,“热”的问题越来越突出,逐渐成为制约这种器件向更高性能提升的最重要问题之一。采用高热导率金刚石作为高频、大功率氮化镓(GaN)基器件的衬底或热沉,可以降低氮化镓(GaN)基大功率器件的自加热效应,并有望解决随总功率增加、频率提高出现的功率密度迅速下降的问题,因此,成为近几年的一个国际研究热点。


硅、碳化硅(SiC)、金刚石基GaN对比


金刚石基氮化镓(GaN)技术

金刚石在目前所知的天然物质中具有最高的热导率,室温下的导热系数高达2000Wm-1K-1,是碳化硅导热系数的四到五倍。作为衬底材料,金刚石可以以数百纳米的尺寸沉积在GaN信道内,使晶体管设备在工作时能够有效散热。在高频、大功率GaN 基高电子迁移率晶体管(HEMT)和电路的散热方面极有应用潜力。Felix Ejeckam于2003年发明了金刚石上的GaN,以有效地从GaN晶体管中最热的位置提取热量。其基本理念是利用较冷的GaN放大器使系统更节能,减少浪费。金刚石上的GaN晶片是通过GaN通道或外延将其从原始的Si衬底中剥离下来,而后通过一个35 nm的SiN界面层结合在CVD合成的金刚石衬底上。这种200°C的GaN通道与CVD形成纳米级的金刚石是接近最导热工业材料,它会大大降低放大器的基板和通道之间的温度上升。图1显示了金刚石晶圆片上GaN的制作过程。多年来,许多课题组已经量化了上述的热改善。先将Si基GaN HEMT晶圆片黏贴到一个临时Si载片上,待原始的硅基板被蚀刻掉,然后利用CVD方法在GaN层下方的35 nm的界面层上沉积金刚石。最后,临时的Si载体被蚀刻,最终的金刚石上的GaN晶圆被加工为HEMT或MMIC。


 图1:金刚石晶圆片上GaN的制作过程


技术系统影响

与SiC基GaN相比,如果GaN MMIC产生的热量可以降低40%到50%,那么就可以将更大的功率密度压缩到更小的体积空间中。功率是下行数据速率计算的直接参数,功率越高,传送的信息越多。在非常紧凑的空间中,使用金刚石上GaN可以降低对于冷却系统的要求。因为与使用标准的SiC基GaN功率放大器相比,金刚石上GaN的使用可以允许环境温度升高得更高,同时不会降低性能与可靠性。冷却装置的减少也意味着重量和尺寸的减少。

金刚石基GaN应用:卫星通信功率放大器

目前而言最先进的商业卫星以100-200Mbps的速度传输于地球,而对于一些先进的大型单一卫星概念目标为1至4Gbps。这些速率数据很大程度受限于制作信号传输器的射频功率放大器。Akash首次建造了一个小型卫星系统(12U),它将初步实现14Gbps的下行数据速率。接下来的demo数据速率将超过100Gbps,而最终目标定为一个普通的卫星的下行速率达到1Tbps。为达到最终目标,他们将使用金刚石上的GaN射频功率放大器。Akash的设计师最近展示了高性能的金刚石基GaN晶体管(简化的功率放大器)。在k波段20GHZ频率下表现出60%的功率附加效率(PAE) (参见图2)。最近由美国国防部高级研究计划局资助,来自佐治亚理工学院、斯坦福大学、加州大学洛杉矶分校和第六元素的一组研究员共同研究GaN器件的温升发现:从GaN通道到衬底底部的温度是变化的,与相同的SiC基GaN器件相比温度降低80℃。这项研究所用的晶圆等同于Akash Systems用的金刚石上GaN。



图2:使用增益为7.9 dB 的2.9 W (5.6 W/mm)HEMT的示例设备得到的PAE为61%,偏置点为24 V。

图3显示了不同类型的金刚石上GaN晶圆的10 finger HEMT从中心到边缘的通道的温度分布。Akash Systems采用“有低热边界阻抗(TBR)的梯度金刚石”制作金刚石上GaN (绿色);这条曲线呈现152°C峰值温度(第一个峰值)。SiC基GaN在器件上同一点的温度是232℃。


Akash Systems计划在2019年发射一个24公斤12U(36cm x24cm x23cm )的卫星系统进入LEO轨道,它将包含一个以金刚石基GaN功率放大器为基础的20瓦的信号传送器。该系统将展现一个具有里程碑意义的14gbps数据速率,对于这样尺寸的卫星系统是独一无二的。


金刚石基GaN的未来展望

将金刚石引入高频、大功率GaN基微波功率器件和电路,解决器件的散热问题,是近几年的国际研究热点。基于多晶金刚石衬底转移技术、基于单晶金刚石的材料直接外延技术和基于纳米金刚石薄膜的器件表面覆膜技术,在解决高频、大功率GaN基HEMT的散热方面都具有非常重要的应用潜力。下一代金刚石基GaN技术将支撑未来高功率射频和微波通信、宇航和军事系统,为5G和6G移动通信网络和更复杂的雷达系统铺平道路。


热门文章

2022

01-18

50 多年来,采用高压高温技术(HPHT) 制造的合成金刚石广泛应用于研磨应用,充分发挥了金刚石极高硬度和极强耐磨性的特性。在过去20年中,基于化学气相沉积(CVD) 的新金刚石生成方法已投入商业化应用,这样就使得以较低成本生成单晶和多晶金刚石。这些新合成方法支持全面开发利用金刚石的光学、热学、电化、化学以及电子属性。目前金刚石已广泛应用于光学和半导体行业。本文主要讨论金刚石的热学优势,介绍...

2022

01-17

激光是20世纪与计算机、原子能和半导体齐名的四项重要发明之一,其在工业、农业、国防、医学、科研、日常生活等诸多领域应用越来越广泛,进入了飞速发展期。随着激光功率及能量越来越高,激光器朝着小型化、集成化发展,需要面临在功率提升过程中激光工作物质加剧的热积累所引发的热透镜、热致双折射、光束畸变以及光谱展宽等负面效应。金刚石拥有已知材料中最高的热导率、低的热膨胀系数、高度的化学惰性及优异的光学性能...

2022

01-11

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业,这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,在5G通讯、航天、国防等领域具有极高的应用价值,是近20余年以来研制微波功率器件最理想的半导体材料。与其他类型芯片类似,在尺寸小型化和功率增大化的条件下,尤其是在高偏置电压工作状态下,...

2022

01-10

具有窄线宽的激光器在激光干涉引力波探测 (LIGO)、精密激光光谱和微波光子学等领域有着重要的应用,尤其是高功率、低噪声、高光束质量的极窄线宽激光光源已成为前沿科学探索中的有力工具。但是自由振荡的激光器受到工作物质的固有增益线宽、谐振腔的相位噪声、机械振动、温度抖动等环境因素的制约,难以直接获得窄线宽激光输出。基于受激布里渊散射(SBS)效应的布里渊激光器,利用SBS光波场与声波场之间频率和...

2022

01-07

氮化镓(GaN)和金刚石的直接集成在大功率器件中具有广阔的应用前景。然而,由于GaN和金刚石之间存在较大的晶格和热膨胀系数失配,在金刚石上生长GaN一直是一个巨大的挑战。近日,日本大阪市立大学Jianbo Liang报道了采用表面活化键合(SAB)方法在室温下成功地制备了GaN/金刚石异质界面。采用透射电子显微镜(TEM)和能量色散X射线能谱(EDS)系统地研究了异质界面的纳米结构和原子行为...

2022

01-06

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业,这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,在5G通讯、航天、国防等领域具有极高的应用价值,是近20余年以来研制微波功率器件最理想的半导体材料。与其他类型芯片类似,在尺寸小型化和功率增大化的条件下,尤其是在高偏置电压工作状态下,...
新闻中心
>行业动态


产品中心
>金刚石热沉片
>金刚石氮化镓
>氮化铝薄膜
>压电氮化铝薄膜

联系我们
>联系我们


E-mail:sales@csmc. tech Telephone:0086-13859969306
厦门总部:福建省厦门市集美区灌口大道253号
韩国分公司:Changchundoing Shinchon-ro 2nd floor
2108 ho Seodaemoon-gu Seoul, Korea
上海办事处:上海市嘉定区浏翔公路955号小美科技园5号楼407室

点击这里给我发消息