设为首页 | 收藏本站

高功率金刚石激光技术研究进展

发表时间:2021-12-27 16:41作者:化合积电网址:http://www.csmc-semi.com

自 1960年世界上第一台激光器诞生以来,人们对激光光源的探索一直没有停歇,并以此推动了工业制造、生命科学、信息技术、科学研究和军事国防等领域的快速崛起。激光技术的发展主要以应用及科学探索为牵引,围绕激光的功率提升、波长拓展、效率提高和频率控制等方向不断开拓,并以此带动光学材料、非线性光学、光束传输与控制、光束合成、参数计量以及热管理等诸多学科领域协同发展。


具有特殊波长和频率特性的高功率激光器作为激光技术发展的重要方向,为高能物理、空间探测、武器装备和材料加工领域提供了令人兴奋的机遇,同时也面临着诸多挑战和难以克服的瓶颈。其中,在功率提升过程中激光工作物质加剧的热积累所引发的热透镜、热致双折射、光束畸变以及光谱展宽等负面效应是限制其性能提升的核心问题。目前,优化泵浦转换效率 (如同带泵浦、谐振腔优化等)、提高单位体积工作物质的表面积 (如光纤、板条激光器

等结构)、增强系统散热功率 (如采用水冷、液氮冷却等)[15−16]以及通过光束合成的方式是目前缓解高功率激光器热效应的主要手段,然而,其可缓解程度仍受到工作物质固有的光学特性和热物性制约。因此,找到拥有更优异光热特性的光学材料是从本质上提升高功率激光器输出极限及性能的技术路径。


作为一种重要的“碳材料”,金刚石不仅是天然存在中最坚硬的物质,同时具有极高的热导率、极宽的光谱透过范围和极高的物理和化学稳定性,被誉为 “最硬最锋利的工业牙齿”和“终极半导体材料”,目前已被广泛用于光学窗口、金刚石压砧、热管理、抛光研磨和电离辐射探测等领域;此外,结合其独特的非线性光学特性,金刚石激光器在拉曼和布里渊激光领域展现出极为突出的优势,为高功率激光的发展提供了新的机遇,如图1所示。



自 18世纪末人们首次得知金刚石特殊的碳结构之后,便尝试通过人工合成的方式获得比天然金刚石更大尺寸和更高纯度的金刚石晶体。高压高温法(HPHT)和化学气相沉积法 (CVD)是目前最广泛使用的金刚石生长工艺,其中 HPHT由于触媒的存在,生长的金刚石纯度较低,难以直接应用于光学和半导体工业领域;而 CVD工艺生长的金刚石则具有非常高的纯度,近年来已经实现低应力双折射的单晶金刚石生长,并有效推动了金刚石激光器的发展。目前,人们已经利用金刚石实现了波段从深紫外到可见光、近红外和中红外的拉曼转换,稳态功率高达千瓦量级,时域上实现了从连续波至飞秒脉冲的运转,频域上获得了单纵模输出;拉曼振荡器结构从传统的空间块状拓展至片上和单片式;同时,也通过金刚石拉曼放大实现了高功率光束合成。此外,近几年人们利用金刚石的布里渊特性,已经分别实现了可见光和近红外波段的自由空间布里渊激光运转,其功率是其他布里渊增益介质和激光运转方式的 10倍以上。图 2概括了金刚石激光器的主要发展历程。




金刚石晶体的基本特性

金刚石由原子序数为六的碳元素组成 (化学符号:C,第二周期 IVA族)。金刚石的原子结构如图 3所示,其每一个碳原子与另外四个相邻的碳原子共价键合,每四个相邻碳原子构成一个正四面体。因为这样的稳定结构,使得金刚石具有极强的硬度、超高的热导率以及极不活泼的化学性质。



金刚石的透射光谱范围覆盖从紫外、可见光、红外至无线电波范围 (如图 4所示),最初被用作显微镜的高折射率材料和极端环境下的红外透射窗口。金刚石的本征光学性质由其在深紫外的禁带宽度决定,其截止波长为 225 nm (5.47 eV);其中在2.5至 6 μm间有微弱的吸收,主要由其声子带吸收决定。此外,金刚石的大禁带避免了金刚石晶体在高温下热产生的电荷载流子,因此,即使在非常高的温度和辐射强度下,金刚石仍然可以保持高透明度。此外 , 金刚石具有优异的热物性 , 其热导率可高达2200 W/(m·K),是常用激光晶体 YAG的 140多倍,比同处于第四族的单晶硅也高出近 13 倍。极高的热稳定性也使得金刚石能够在高温、高强度的严苛工作条件下呈现优异的性能,因此广泛应用于材料冷却等领域。与其他宝石一样,人们寄希望金刚石能成为优良的激光激活离子的载体,然而,在不损害其核心材料优势的情况下向致密晶格结构中引入掺杂离子极其困难。幸运的是,因为金刚石内部碳原子的高原子密度和强键合特性,结合高度对称的晶格结构,使其具有高拉曼增益;同时,高折射率和高声波传输速度使之具有高布里渊增益和布里渊频移。因此,金刚石晶体能够为高功率和高效率的拉曼和布里渊激光运转提供新的载体。




金刚石拉曼激光器


金刚石作为一种性能优异的晶体拉曼材料,具有已知晶体材料中最大的拉曼移 1332.3 cm−1,其室温下拉曼增益线宽约为 1.5 cm−1。金刚石的拉曼增益具有偏振选择性,当泵浦光偏振方向和金刚石晶体<111>方向平行时,其拉曼增益最大 (10 cm/GW@ 1 μm),且输出线偏振的拉曼光。金刚石具有超高的热导率,其超快的热耗散能力是金刚石晶体在高功率运行下保持高拉曼增益不变并获得高光束质量激光输出的关键。表 1为金刚石与其他拉曼增益材料在激光性能方面相关参数的对比。



虽然拉曼激光器的概念已经超过半个世纪,但是金刚石作为拉曼激光器增益材料只在近 10年得到研究发展,这得益于大体积单晶金刚石合成技术的日益成熟。2004年,俄罗斯科学院的 Kaminskii等人在 CVD金刚石中观察到了受激拉曼散射 (SRS)现象,随后,英国、澳大利亚、德国等国科学家相继开展金刚石拉曼激光器研究。虽然此时基于其他晶体如硝酸钡、钨酸钡、钒酸钡的拉曼激光器的发展已逐渐成熟,但是金刚石拉曼激光器仍旧以其独有的特点在波长拓展、功率提升、单纵模运转、光束净化和光束合成等领域得以快速发展。


直接泵浦连续/准连续运转


内腔和外腔拉曼振荡器是拉曼激光器的两种典型结构,其区别在于激光工作物质与拉曼增益介质是否在同一个振荡腔中。虽然内腔拉曼激光器 (含自拉曼)具有结构紧凑、拉曼产生阈值较低等特性,但其晶体选择范围相对局限、对振荡器镀膜要求较高;当腔内同时包含激光工作物质和拉曼介质时,振荡器需要进行特殊的设计,且其输出功率和光束质量等因素往往由腔内光学特性及热物性最差的材料所制约。相较而言,外腔拉曼振荡器的拉曼增益介质独立于激光振荡器,因此:1) 其泵浦源可覆盖多种类型的激光器 (如固体、光纤、半导体激光器等),因此泵浦激光的波长所覆盖的范围更广;2)拉曼增益介质脱离了激光工作物质的制约,可根据不同的泵浦波长和频移等需求选择不同类型的拉曼增益介质,有效拓展拉曼激光器的波长范围;3) 谐振腔的设计更具有灵活性,容易根据不同的镀膜和腔型设计获得不同类型的拉曼激光输出;4)激光功率输出极限主要受制于拉曼增益介质和谐振腔结构本身,且晶体的热处理更容易。所以外腔金刚石拉曼激光器在实现高功率运转方面具有更大的优势和可行性,因此,研究人员对外腔金刚石拉曼激光器的高功率运转开展了大量的研究。


2014年麦考瑞大学的 Williams 等利用准连续激光泵浦外腔金刚石拉曼激光器,得到了最大功率为 108 W 的拉曼激光输出;当泵浦激光调制成准续输出时,最高获得了峰值功率 381 W的、转换效率 61% 的拉曼 1 240 nm 激光输出,并首次通过实验在 金 刚 石 中 观 察 到 了 受 激 布 里 渊 散射 (SBS)现象。2017年,Williams等在利用准连续的 1.06 μm Nd:YAG激光作为泵浦源对二阶金刚石拉曼转换的高功率运行进行了研究,在人眼安全的 1.49 μm 处得到了功率 114 W、转换效率 44%的拉曼激光输出,其实验装置及结果如图 5(a)所示。同年 , 耶拿大学Heinzig等通过高功率单通泵浦的金刚石拉曼激光器,在泵浦光功率为 970 W 时获得了最大输出功率 329 W、转换效率 40% 的拉曼转换输出。值得一提的是,2019年麦考瑞大学 Antipov等获得了输出功率 1.2 kW 的拉曼激光,斜率效率高达 83%,实验装置如图 5(b)所示,至此金刚石拉曼激光器的稳态功率已突破千瓦。




除了准连续泵浦外,金刚石拉曼激光器在连续运转方式方面也有较大的发展,其中,2012年 Kitzler等通过连续泵浦的外腔金刚石拉曼激光器,得到10.1 W 的泵浦极限拉曼激光输出;同年,Savitski等通过连续金刚石拉曼转换,在 1217 nm 处得到功率为5.1 W 的拉曼转换输出。2015年,该团队用高功率连续光 1064 nm光纤激光器作为泵浦源实现了功率154 W,转化效率 50.5% 的连续光 1 240 nm激光输出。


图 6为近十几年不同运行方式的金刚石拉曼激光器输出功率与光纤和其他晶体拉曼激光器的对比。从图中可以看出,虽然金刚石拉曼激光器相较于其他类型拉曼激光器出现的相对较晚,但是其输出功率的提升速度非常快,每 2-3年提高一个数量级,且其最大输出功率已经远远超过其他晶体拉曼激光器的输出功率。虽然目前金刚石拉曼激光器所获得的功率低于光纤拉曼激光器,但是得益于金刚石优异的光学性质和热物性,以及随着人造金刚石生长工艺水平、热管理方法及泵浦功率的提升,金刚石拉曼激光器在更高功率运转方面具有更广阔的发展前景。




单纵模运转


由于拉曼增益无空间烧孔效应,拉曼激光器可用于产生单纵模激光输出,结合金刚石晶体优异的光学特性,金刚石拉曼激光器在稳定单纵模激光产生方面具有独特的优势和发展前景。2016年,麦考瑞大学的 Lux等对输出波长可调的单纵模金刚石拉曼激光输出进行了实验研究,在没有任何选频器件的辅助下,得到波长调谐在 1 238.1-1 241.9 nm 范围的单纵模拉曼激光输出;随后,通过二阶拉曼转换并且结合体布拉格光栅,获得功率为0.5 W、中心波长为1 486 nm、频率稳定性为 40 MHz (1-2分钟内)且可用于水蒸气检测的单纵模激光输出,其实验装置及结果如图 7(a)所示。2019年,Sarang等[46]通过连续泵浦驻波金刚石拉曼振荡器结合主动腔长锁定方法,得到了功率高达7.2 W的单纵模拉曼转换输出,实验装置如图7(b)所示;同年,麦考瑞大学 Yang等采用外腔金刚石拉曼结合腔内倍频技术,在简单的驻波谐振腔中,基于拉曼增益的无空间烧孔效应和倍频晶体引入的纵模增益竞争,首次利用多纵模的泵浦激光得到输出功率高达 38 W,近衍射极限的 620 nm单纵模激光输出;随后,Yang等人又实现了稳定的单纵模 589 nm钠导星激光输出,连续激光功率为 22 W,输出线宽小于 8.5 MHz,输出光束质量因子 M2<1.1,实验装置如图 7(c)所示。基于金刚石拉曼实现高功率 589 nm钠导星激光的方案,已经满足钠导星激光器的基本应用需求,而且该方案的转化效率目前是最高的,泵浦二极管 976 nm 到 589 nm的转换效率高达 18.6%。此外,麦考瑞大学的 Kitzler等利用单模钛蓝宝石激光泵浦金刚石拉曼激光器,采用环形腔结构结合Stokes单向传输以及泵浦频率锁定的方式,获得功率为 1W、转换效率为 20%的一阶单纵模拉曼转换输出;2020年,麦考瑞大学 Li等采用环形腔结构,实现了最大功率为 140 mW的1101.3 nm二阶单纵模拉曼激光输出。



因此,金刚石拉曼激光技术是一种高效地产生可见光和近红外波段的高功率单纵模激光的有效手段。目前,该波段大功率单纵模激光输出的主要竞争对手是光纤激光器,其已经报道了超过 500 W的输出功率。然而,光纤中的受激布里渊散射效应和热致横模模式不稳定性 (TMI)这两个不可克服的挑战,极大地限制了输出激光的光束质量和输出功率。金刚石快速散热的能力和它可调控的受激布里渊散射过程,为获得更高功率的单纵模激光提供了一条有希望的途径,同时可以保持良好的光束质量。


亮度增强


具有高亮度的激光源在国防、空间探测、遥感等领域有着重要的应用,得益于拉曼转换过程中存在的 “光束净化”效应,研究人员在金刚石拉曼转换中成功实现了激光光束的亮度增强。2018年,澳大利亚麦考瑞大学的 Bai等利用光束质量可调的激光泵浦外腔金刚石拉曼激光器,在泵浦光 M2可变化范围内均得到近衍射极限的一阶拉曼激光输出,在有限的泵浦功率下输出的最高 Stokes光功率为 390 W,且当泵浦光 M2为 7.3时,获得最高亮度增强因子 (BEF)为

12.7;随后,Antipov等将泵浦功率提升至 kW 量级,利用光束质量严重恶化(M2=15)的1 064 nm 激光作为泵浦源,最终获得稳态功率为 1.2 kW、光束质量因子M2=1.25、亮度增强因子高达56的1 240 nm激光输出。


基于金刚石较大的拉曼频移,产生高亮度级联拉曼激光在诸多领域都有重要的应用价值。Mckay等利用 M2=3~4的 1 064 nm纳秒脉冲激光作为泵浦源,对二阶金刚石拉曼转换的亮度特性进行了研究,在 1 485 nm处得到了 M2为 1.17、亮度增强因子为 1.7的二阶拉曼转换输出;此外,麦考瑞大学的Bai等还利用准连续光源开展了级联金刚石拉曼激光器的亮度增强研究,当泵浦光 M2=6.4、功率为832 W时,得到最高功率为 302 W、光束质量因子 M2为 1.1的 1.49 μm二阶 Stokes光输出,输出激光的亮度达到泵浦光的 6倍。图 8为金刚石拉曼亮度增强的实验装置及结果示意图。






以上研究表明,金刚石拉曼的方法可用于获得更宽的波长范围的高亮度激光输出,并有效避免比如高功率光纤拉曼激光器中的横模模式不稳定性问题。基于金刚石超快热耗散和光束净化的优势,金刚石拉曼激光器还可以用作改善光束质量不佳的高功率连续激光器的光束亮度,如高功率大模场光纤激光器、碟片、板条以及二极管阵列等。


超短脉冲泵浦

在超短脉冲金刚石拉曼激光器方面,麦考瑞大学的 Spence 等采用 532 nm的脉冲宽度 26 ps的锁模激光器,通过同步泵浦外腔金刚石,实现了平均功率2.2 W、脉冲宽度 21 ps的 573 nm 激光,并通过调节外腔腔长得到最短脉冲宽度 9 ps的激光输出,其结构如图9(a)所示,随后,他们采用脉冲宽度170 fs的796 nm钛宝石激光同步泵浦外腔金刚石,结合腔内棱镜压缩技术获得了95 fs 890 nm 金刚石拉曼激光。



单片式


除了传统的腔镜谐振腔外,2015年,英国思克莱德大学 Reilly等人采用刻蚀的方法制备出了单片式的金刚石拉曼振荡器,其中腔镜由金刚石表面镀膜膜层构成,通过利用调 Q的 532 nm、1.5 ns-激光泵浦获得了三阶 Stokes (573 nm, 620 nm 和 676 nm)激光输出,泵浦光到拉曼光的转化效率高达 84 %,最高输出功率134 mW,其工作原理和结构如图10所示。



光束合成

为了解决高功率激光输出的瓶颈,将若干束低功率的光束通过相干或光谱合成以实现更高功率单一光束输出的组束技术,近年来也已成为一种实现高功率、高能量激光输出的有效路径。2017年麦考瑞大学 McKay等利用拉曼放大,通过将四束空间光(3束泵浦光和 1束拉曼种子光)进行合成,实现了峰值功率 6.7 kW,泵浦转化效率 69%的 1240 nm 金刚石拉曼组束激光输出,其装置如图 11所示。基于金刚石拉曼放大的光束合成方案为若干束小功率常规波长激光直接转移至特殊拉曼波长,进而获得高功率激光输出提供了可能。



金刚石布里渊激光器


虽然同为非弹性散射,但受激布里渊散射与受激拉曼散射不同的是,其为强光光子与介质内部声子场作用产生具有一定频率下移的光子并被不断放大的过程。虽然布里渊散射中声波场的作用类似于拉曼散射中分子振动,但由于声波场的振动频率远低于介质内部的分子振动频率,因此材料布里渊频移(~GHz)远低于常规介质的拉曼频移 (~THz),因此布里渊激光的量子亏损要比拉曼激光低得多,而且几十 GHz 的布里渊频移可以用作光子微波合成技术领域。此外,由于布里渊增益线宽非常窄 (MHz),因此布里渊激光器可以产生极窄线宽的激光输出,在微波光子学、相干通信、量子处理器和光谱学等领域应用前景广阔。目前,布里渊激光主要通过几种特殊材料(如硫系化合物、硅、二氧化硅、氮化铝等)并通过波导结构 (如微谐振器、光纤和薄片) 产生。表 2为金刚石与其他固体布里渊增益材料的参数对比。如表所示,金刚石布里渊增益系数数值虽低于声光晶体TeO2 (100 cm/GW,已知最高),但远高于目前常用的波导和微腔所采用的布里渊材料硅 (0.24 cm/GW) 以及 CaF2 (4.11 cm/GW),且与常用的硫族化合物材As2S3 (74 cm/GW) 相当。结合金刚石固有的宽光谱透过范围和优异的热性能,金刚石晶体具备实现多波长高功率布里渊激光输出及高集成度光子器件的潜力。




间接泵浦

2015年,麦考瑞大学 Mildren课题组的 Williams等[76]利用高功率单频光纤激光器对金刚石拉曼激光器进行泵浦,在拉曼光谱附近首次发现了金刚石的受激布里渊散射。随后,他们分别利用1 064 nm单纵模和多纵模激光作为泵浦源,泵浦在一阶拉曼波长(1241.42 nm)具有高精细度的金刚石拉曼激光腔对金刚石布里渊激光输出进行研究,并获得了高达40 W的准连续金刚石布里渊激光 (1 241.79 nm)输出,布里渊频移约为 71 GHz,同时观察到金刚石级联布里渊频率和布里渊反斯托克斯频率梳等输出特性。该外腔金刚石拉曼产生布里渊激光输出的实验结构图如图12(a)所示。利用腔内拉曼产生布里渊激光的原理,如图 12(b)所示,可概括为:频率为 ωp的泵浦光注入拉曼腔后,通过与金刚石的作用首先达到拉曼激光的阈值产生频率为 ωR的拉曼激光;随着泵浦光功率的增加,腔内频率为 ωR的拉曼光功率密度也随之增加,当达到受激布里渊散射阈值时,腔内的拉曼光将产生相等于声波场频率 ωΩ的频移,并产生频率为 ωB的受激布里渊散射;当腔长满足 ωR与 ωB的共振条件时,腔内的受激布里渊散射将被放大并振荡输出。



直接泵浦


2020年,麦考瑞大学 Bai 等人为实现金刚石布里渊激光的纯净输出,采用外腔谐振增强的连续光泵浦环形腔结构,利用泵浦光直接产生稳定的布里渊激光输出,其实验结构图如图 13所示。实验采用单频532 nm激光作为泵浦源,采用 HC锁腔技术实现泵浦光腔内谐振增强,通过精细调节腔长,实现布里渊频率和泵浦光频率同时谐振,在后向直接产生连续光功率 11 W 的布里渊激光输出,为目前所获得的最高功率连续波运转的布里渊激光。考虑金刚石不同晶格方向上的光弹系数不同,通过理论计算得到金刚石的布里渊增益最大可达 79 cm/GW。此外,通过分析布里渊阈值与谐振腔腔长调谐的关系,首次测得金刚石的布里渊增益线宽约为12 MHz。




该研究表明,基于金刚石晶体有望获得高功率、极窄线宽的布里渊激光输出,并具备实现多波长布里渊激光输出及高集成度光子器件的潜力。更具前景的是,通过调节泵浦光频率,金刚石布里渊频移可以覆盖整个毫米波波段 (最高 300 GHz),这为高频雷达和高带宽无线通信等重要应用提供新的解决途径。



金刚石晶体所具有的优异光热特性以及非线性特性使得其在高功率激光器方向得到了足够的重视以及快速的发展。研究人员在金刚石拉曼激光器的输出功率、单纵模、亮度增强以及不同结构和运行方式等方面做了大量的工作,通过拉曼转换将其输出功率提高到了 kW 量级;单纵模输出功率也提高至数十瓦;产生拉曼光亮度也达到了泵浦光的 50余倍;并探索将其输出波长拓展至长波红外等新的波段。此外,利用环形腔结构结合单向传输方式突破了传统直腔结构,分别通过一阶、二阶金刚石拉曼转换得到了稳定的单纵模输出,激光线宽~MHz。以上研究对实现高效率的拉曼激光转换以及实现输出满足更多需求的拉曼激光具有重大意义。除此之外,金刚石布里渊激光器在近些年也取得了突破性的进展,不仅通过间接泵浦金刚石布里渊激光器成功产生了布里渊激光,也利用环形腔结构结合主动锁腔的方式获得了连续功率为 11 W 的布里渊激光输出,为后续产生更高功率的金刚石布里渊激光器打下了坚实的基础。


虽然相比于其他激光晶体,金刚石的高热导率使得其拥有更大的损伤阈值,能够产生更高的输出功率,但人们还是在高功率运转的金刚石晶体中观察到了热效应。所以要想通过金刚石激光器获取更高功率的激光输出,进一步研究金刚石的热量转化和传递过程以及采取相应的热管理措施是非常有必要的。随着人们对金刚石晶体特性以及激光器工作过程了解的深入,对于拓展金刚石激光器的应用具有重大意义。


化合积电一直专注于金刚石的研发和生产,现有金刚石热沉片、晶圆级金刚石、GaN on Diamond、Diamond on GaN、氮化铝基板等产品,广泛应用于通讯、激光器、军工等领域。



热门文章

2022

01-18

50 多年来,采用高压高温技术(HPHT) 制造的合成金刚石广泛应用于研磨应用,充分发挥了金刚石极高硬度和极强耐磨性的特性。在过去20年中,基于化学气相沉积(CVD) 的新金刚石生成方法已投入商业化应用,这样就使得以较低成本生成单晶和多晶金刚石。这些新合成方法支持全面开发利用金刚石的光学、热学、电化、化学以及电子属性。目前金刚石已广泛应用于光学和半导体行业。本文主要讨论金刚石的热学优势,介绍...

2022

01-17

激光是20世纪与计算机、原子能和半导体齐名的四项重要发明之一,其在工业、农业、国防、医学、科研、日常生活等诸多领域应用越来越广泛,进入了飞速发展期。随着激光功率及能量越来越高,激光器朝着小型化、集成化发展,需要面临在功率提升过程中激光工作物质加剧的热积累所引发的热透镜、热致双折射、光束畸变以及光谱展宽等负面效应。金刚石拥有已知材料中最高的热导率、低的热膨胀系数、高度的化学惰性及优异的光学性能...

2022

01-11

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业,这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,在5G通讯、航天、国防等领域具有极高的应用价值,是近20余年以来研制微波功率器件最理想的半导体材料。与其他类型芯片类似,在尺寸小型化和功率增大化的条件下,尤其是在高偏置电压工作状态下,...

2022

01-10

具有窄线宽的激光器在激光干涉引力波探测 (LIGO)、精密激光光谱和微波光子学等领域有着重要的应用,尤其是高功率、低噪声、高光束质量的极窄线宽激光光源已成为前沿科学探索中的有力工具。但是自由振荡的激光器受到工作物质的固有增益线宽、谐振腔的相位噪声、机械振动、温度抖动等环境因素的制约,难以直接获得窄线宽激光输出。基于受激布里渊散射(SBS)效应的布里渊激光器,利用SBS光波场与声波场之间频率和...

2022

01-07

氮化镓(GaN)和金刚石的直接集成在大功率器件中具有广阔的应用前景。然而,由于GaN和金刚石之间存在较大的晶格和热膨胀系数失配,在金刚石上生长GaN一直是一个巨大的挑战。近日,日本大阪市立大学Jianbo Liang报道了采用表面活化键合(SAB)方法在室温下成功地制备了GaN/金刚石异质界面。采用透射电子显微镜(TEM)和能量色散X射线能谱(EDS)系统地研究了异质界面的纳米结构和原子行为...

2022

01-06

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业,这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,在5G通讯、航天、国防等领域具有极高的应用价值,是近20余年以来研制微波功率器件最理想的半导体材料。与其他类型芯片类似,在尺寸小型化和功率增大化的条件下,尤其是在高偏置电压工作状态下,...
新闻中心
>行业动态


产品中心
>金刚石热沉片
>金刚石氮化镓
>氮化铝薄膜
>压电氮化铝薄膜

联系我们
>联系我们


E-mail:sales@csmc. tech Telephone:0086-13859969306
厦门总部:福建省厦门市集美区灌口大道253号
韩国分公司:Changchundoing Shinchon-ro 2nd floor
2108 ho Seodaemoon-gu Seoul, Korea
上海办事处:上海市嘉定区浏翔公路955号小美科技园5号楼407室

点击这里给我发消息