设为首页 | 收藏本站

科技前沿|基于金刚石自旋的光学可寻址量子门

发表时间:2022-08-03 14:29作者:化合积电网址:http://www.csmc-semi.com

金刚石俗称钻石,是一种超宽禁带半导体材料,具有超强的抗辐照能力、超快的时间响应、极高的热导率、极高的击穿场强以及近人体组织等效性。金刚石制成的量子存储器可用于高能物理、量子转换、核能开发以及医学中。与传统存储器相比,金刚石量子存储器能将光子转换成金刚石中碳原子的特定振动,适用于许多不同颜色光的这种转换,将允许对光进行广谱操纵。金刚石的能量结构允许其以很低的噪声在室温下实现。研究人员利用强激光脉冲来存储和检索光子。通过控制这些激光脉冲的颜色,研究人员就能控制所要检索光子的颜色。利用天然金刚石制成的量子存储器由于价格昂贵、一致性差且不能进行材料的原位调控,影响了金刚石量子存储器的发展。然而,随着化学气相淀积(CVD)技术的发展,获得高质量、大尺寸、低成本的金刚石材料成为可能。

在固态晶体中,单独控制众多自旋的能力,是开发大规模量子处理器和存储器的一项很有前景技术。局域激光场通过自旋轨道耦合,为电子自旋操纵提供了空间选择性,但很难同时实现精确和通用调控。近日,有专家演示了在金刚石中,氮空位中心的光学选择电子自旋上,实验了微波驱动的完整量子门。电子自旋可精确地调控,全局微波可以调谐到由局部光学斯塔克效应引起的频移。此外,还展示了操作的通用性,包括状态初始化、准备、读出和回显echo。还在电子和相邻氮核自旋之间产生了光学可寻址的量子纠缠。高保真操作是通过施加幅度交替脉冲来实现的,该幅度交替脉冲能够容忍微波强度和失谐的波动。这些技术,实现了从光子到核自旋存储器的位置选择性量子隐形传态转移,并助力实现分布式量子计算机和具有大规模量子存储的量子互联网。

以下是金刚石自旋上的光学可寻址通用全息量子门实验的图文研究进展:

图1:光学可寻址通用完整门的原理

图2:取决于激光功率或氮空位nitrogen-vacancy,NV位置的门对比度实验演示

图3:光学可寻址通用单量子位操作的实验演示

图4:光学可寻址纠缠产生entanglement generation

化合积电专注于金刚石的研发与生产,具备MPCVD设备设计能力,国内首家掌握MPCVD制备高质量金刚石的核心工艺并实现量产,并且独创基于等离子体辅助抛光的金刚石原子级表面高效精密加工方法,晶圆级金刚石Ra<1nm,金刚石热沉片热导率1000-2000W/m.k,更有GaN on diamond 、Diamond on GaN、金刚石基氮化铝等产品,为您提供最全金刚石热管理解决方案。采用金刚石热沉的大功率半导体激光器已经用于光通信,在RF功率放大器、激光二极管、功率晶体管、电子封装材料等领域也都有应用。


热门文章
>

2022

09-23

GaN 作为第三代半导体材料, 具有更高的自发极化系数及更大的压电系数, 能承受更高的功率密度,适用于高频、 高温大功率电子器件。但随着功率器件向小型化和大功率发展,芯片有源区的热积累效应使  GaN 器件的大功率性能优势远未得到充分发挥。当器件温度上升时, 器件特性如漏源电流、增益、输出功率和寿命等会出现退化, 甚至失效。研究表明,结温每升高10 ~ 12 ℃ ,器件的寿命及可靠性会降低5...
>

2022

09-22

随着GaN(氮化镓)在高功率和高频率领域广泛应用,氮化镓功率密度已接近极限值,要提升芯片功率,兼顾降低热阻,必须要有全新的散热方案,金刚石和氮化镓结合因此备受关注。当前金刚石和氮化镓有三种主流方式:将金刚石键合到 GaN 晶片或直接键合到 HEMT 器件;在单晶或多晶金刚石衬底上生长 GaN 外延;在 GaN 的正面或背面上生长纳米晶或多晶金刚石。化合积电一直潜心攻关金刚石和氮化镓结合的核心...
>

2022

09-21

应用环境实际要求显示器需以较高的显示亮度在高温环境下保持正常工作。在工作过程中,显示器产生的高热量加剧了其内部温升。高温会导致显示器组成材料的物理性能或尺寸发生改变,也会给温度敏感元器件带来失效的风险。同时,超高亮度显示器主要通过提高LED 光源能量的方式来实现,而 LED 光源能量的提升会导致显示器内部的热能急剧增大。热量的快速积聚不仅会导致 LED 光源输出光强度减弱,甚至会引起 LED...
>

2022

09-19

高频电子设备的急剧小型化导致单个组件的局部工作温度急剧升高。金刚石具有宽带隙、高热导率、高载流子迁移率、高击穿场、高载流子饱和速度和高位移能。这些特性使金刚石成为在高温、高压、高频和高辐射等极端环境中具有巨大应用价值的优秀候选材料。金刚石的各种电子器件已经广泛开展研究,包括MOSFET、散热器、探测器、核电池和电化学应用等。目前已经开发了几种高温金刚石器件,包括场效应晶体管(FET)和肖特基...
>

2022

09-16

氮空位(NV)中心是指在金刚石中由一个替位氮原子和一个空位构成的点缺陷。NV中心有望应用于固态量子比特、高灵敏度量子传感器等领域。在量子应用中,带负电荷的NV-中心必须处于稳定状态,因为NV器件的灵敏度等参数正比于NV-中心数量。同时,如果NV中心变成中性或带正电荷 (NV0或NV+),其自旋状态将无法操控。在硼掺杂金刚石中,NV中心为NV+状态,因此很少有人研究硼掺杂金刚石的NV中心。但是...
>

2022

09-15

根据IDTechEx的报告,5G基础架构的主要挑战之一是热管理。5G天线使用更高频率,需要增加增益才能达到可接受的性能范围。另外,5G毫米波频谱在透过墙壁或窗户等物体时的传播非常差,因此需要更多的单天线单元才能提供足够的覆盖范围。较高的频率还减小了天线元件之间的间距,从而导致电子组件阵列的密度更高,它们都必须及时消散热量。随着网络中天线安装数量的增加和密度的提高,主动热管理冷却方法(例如风扇...
联系我们


E-mail:sales@csmh-semi.com Telephone:0086-13859969306
厦门总部:福建省厦门市集美区灌口大道253号
韩国分公司:3516 ho,69,Hangang-daero,Yongsan-gu, Seoul, Korea
点击这里给我发消息