设为首页 | 收藏本站

盘点金刚石衬底GaN基微波功率器件研究进程

发表时间:2021-12-24 14:26作者:化合积电网址:http://www.csmc-semi.com

2006年,美国Cree公司的Wu等人研制的GaN基高电子迁移率晶体管(HEMT),4GHz时的输出功率密度达到 41.4W/mm。近十多年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业。


氮化镓(GaN)基半导体材料具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,是近20余年以来研制微波功率器件最理想的半导体材料。随着外延材料晶体质量的不断提高和器件工艺的不断改进,基于GaN基材料研制的微波、毫米波器件和电路,工作频率越来越高,输出功率越来越大,器件尺寸也越来越小,过热的问题越来越突出,逐渐成为制约这种器件向更高性能提升的障碍之一。


采用高热导率金刚石作为高频、大功率 GaN基器件的衬底或热沉,可以降低器件的自加热效应,并有望解决随总功率增加、频率提高出现的功率密度迅速下降的问题,因此在国际上成为近几年的研究热点。


金刚石在GaN基HEMT中的应用潜力

4英寸金刚石基GaN晶圆


金刚石具有禁带宽度大、硬度和热导率极高、电子饱和漂移速度高、耐高温、抗腐蚀、抗辐照等优异性能,在高压和高效功率电子、高频和大功率微电子、深紫外光电子等领域都有着极其重要的应用前景。金刚石具有目前所知的天然物质中最高的热导率(2200W/m·K),比碳化硅(SiC)大4倍,比硅(Si)大13倍,比砷化稼(GaAs)大 43倍,是铜和银的4~5倍,所以,目前的一个重要研究方向是将金刚石作为大功率 GaN基微波器件的衬底或将其应用于其他散热通道,有望解决 GaN 基微波器件随总功率增加、频率提高出现的功率密度迅速下降、效率降低和器件失效问题。此外,不掺杂的金刚石亦具有很高的电阻,这也非常有利于提高GaN功率单片微波集成电路(MMIC)的器件隔离度。


硅、碳化硅(SiC)、金刚石衬底GaN对比


硅衬底氮化嫁:这种方法比另外两种良率都低,不过它的优势是可以使用全球低成本、大尺寸CMOS硅晶圆和大量射频硅代工厂。因此,它很快就会以价格为竞争优势对抗现有硅和砷化镓技术,理所当然会威胁它们根深蒂固的市场。


碳化硅衬底氮化镓:这是射频氮化镓的“高端”版本,SiC衬底氮化镓可以提供最高功率级别的氮化镓产品,可提供其他出色特性,可确保其在最苛刻的环境下使用。


金刚石衬底氮化镓:将这两种东西结合在一起是很难的,但是好处也是巨大的:在世界上所有材料中工业金刚石的热导率十分优异(因此最好能够用来散热)。使用金刚石代替硅、碳化硅、或者其他基底材料可以把金刚石高导热率优势发挥出来,可以实现非常接近芯片的有效导热面。


几种典型半导体材料性能对比


金刚石作为衬底在GaN基HEMT中的研究历程


2001年,德国的Seelmann-Eggebert等人就从理论和实验两方面探讨了化学气相沉积金刚石热扩散膜在GaN基HEMT中的应用潜力。


2003年,Felix Ejeckam发明了金刚石上的GaN,以有效地从GaN晶体管中最热的位置提取热量,其基本理念是利用较冷的GaN放大器使系统更节能,减少浪费。金刚石上的GaN晶片是通过GaN通道或外延将其从原始的Si衬底中剥离下来,而后通过一个35 nm的SiN界面层结合在CVD合成的金刚石衬底上。这种200°C的GaN通道与CVD形成纳米级的金刚石是接近最导热工业材料,它会大大降低放大器的基板和通道之间的温度上升。下图显示了金刚石晶圆片上GaN的制作过程。多年来,许多课题组已经量化了上述的热改善。先将Si衬底GaN基HEMT晶圆片黏贴到一个临时Si载片上,待原始的硅基板被蚀刻掉,然后利用CVD方法在GaN层下方的35 nm的界面层上沉积金刚石。最后,临时的Si载体被蚀刻,最终的金刚石上的GaN晶圆被加工为HEMTs或MMICs。

金刚石晶圆片上GaN的制作过程


2007年,Francis等对Si、蓝宝石、SiC和金刚石等几种GaN基 HEMT的常用衬底进行了对比研究,研究结果表明,即使是与热导率较高的SiC衬底相比,金刚石衬底GaN基HEMT的优势也非常明显,所研制的金刚石衬底 GaN基 HEMT,热阻降低58%,输出功率密度提高3倍


欧盟于2008年启动 MORGaN项目(2008-11-01~2011-10-31),首先将高热导率金刚石引入了GaN 基HEMT器件和电路的研制中,研究单晶金刚石衬底、纳米金刚石表面覆膜等技术对GaN 基HEMT器件性能的影响。下图给出了他们的一个早期研究结果,研究发现,在器件研制过程中引入纳米金刚石表面覆膜,可以将衬底对器件的影响大大降低,提高器件的散热能力。

欧盟MORGaN计划研究结果


随后,在2011年,美国国防先期研究计划局(DARPA)启动了 “近结热传输 ”(HJTT)项 目(2011-2015),支持NGAS、BAE、Raytheon、TriQuint和RFMD 5个团队开展金刚石用于GaN基HEMT以解决器件散热问题的研究。这些团队于2013年4月30日演示了所研制的基于金刚石的GaN 基HEMT,该晶体管显示出比商用器件低得多的结温,大幅改善了晶体管的热特性,并且使射频系统的性能得到提升。在保持相同输出功率的情况下,新型放大器比目前最先进的氮化镓放大器尺寸减小3倍,从而使得射频系统的尺寸更小、重量更轻、功耗更低;在保持相同尺寸的情况下,该新型功率放大器可增大输出功率3倍,使得通信系统的信号更强、雷达装备的探测距离更远。


2012年,Hirama等常用的使用SiC为衬底的HEMT 结构与使用金刚石为衬底的HEMT结构的温度进行了测量,在栅宽630um,输出功率2W 的条件下,器件温度最高处分别为36℃与46℃,与室温相比分别上升了13℃和23℃,下图所示。由此计算得使用金刚石衬底的HEMT 热阻值为4.1 K·mm·W-1,是目前所报道的HEMT器件中的最低值。相比之下,相同结构使用SiC衬底的HEMT器件的热阻为7.2 K·mm·W-1,约是使用金刚石衬底的器件热阻的2倍。


2013年,美国Group4的研究人员对金刚石衬底 GaN基 HEMT器件的可靠性进行了研究,器件在沟道温度 200℃下175000 h的试验过程中,电流变化最大不超过10%,显示了金刚石衬底 GaN基 HEMT在长期可靠性方面的优势。


2017年,富士通公司和富士通实验室宣布开发出第一种在室温下将单晶金刚石键合到SiC基板上的技术。这克服了之前在非常高的温度下进行GaN与金刚石键合时的最大挑战之一:由于热膨胀系数(CTE)的不匹配而导致的晶片弯曲。

通过用极薄的金属膜保护金刚石表面,富士通成功地防止了损伤层的形成,并通过“室温键合”技术将单晶金刚石键合到SiC衬底上。使用实际测量的热参数进行仿真确认使用该技术的器件热阻将降低至现有的61%。该技术保证了GaN功率放大器在应用于气象雷达等系统时能够以约1.5倍的更高功率工作。


2017年3月,RFHIC宣布他们已从元素六公司收购了金刚石基GaN技术,并计划在2018年底前将该工艺商业化。自2016年以来,他们一直在使用金刚石基GaN技术,并在其声明中称“在可预见的未来,RFHIC将与元素六和代工合作伙伴密切合作,实现10000个6英寸金刚石基GaN的年产出。RFHIC的技术路线图是在2018年底前发布覆盖40 GHz的金刚石基GaN解决方案。”


国内重点研究金刚石衬底GaN基HEMT的单位主要集中在中电集团、中科院半导体所、西安交通大学、西安电子科技大学、电子科技大学等,并相继取得突破,掌握了高质量半导体金刚石单晶材料制备的MPCVD和RFCVD技术,实现英寸级单晶金刚石衬底及其关键设备的产业化。


未来展望


基于多晶金刚石的衬底转移技术、基于单晶金刚石的材料直接外延技术和基于纳米金刚石薄膜的器件表面覆膜技术,在解决高频、大功率GaN基HEMT的散热方面都具有非常重要的应用潜力。下一代金刚石基GaN技术将支撑未来高功率射频和微波通信、宇航和军事系统,为5G和6G移动通信网络和更复杂的雷达系统铺平道路。

热门文章

2022

05-18

发光二极管(LED)与传统的白炽灯相比具有驱动电压低、节能、高稳定度、响应时间短、不含有害的金属汞等优点。美国等国家对LED照明效益进行了预测,美国55%白炽灯及55%的日光灯将被LED取代‚每年可节省350亿美元电费,减少7.55亿吨二氧化碳排放量。然而LED的的发光功率较低,通常每组信号灯需由300~500只二极管构成,如果能低成本制备出高功率的LED将更有利于LED 的广泛使用。据称高...

2022

05-17

GaN 功率器件的理论输出功率密度可达40 W/mm 以上,但是由于现阶段因其自身热效应问题导致 GaN HEMT 器件功率密度仅为 3~5 W/mm,由此可见其自身优势远远未发挥。主要原因是在高偏置电压工作状态下,过大的功率耗散导致器件升温,而传统的低热导率衬底和散热途径的散热能力有限,阻碍热量向周围环境扩散,进而加强声子散射,引起势阱中载流子迁移率下降,使器件的静态 I-V 特性衰减,这...

2022

05-16

用于热沉领域的金刚石薄膜的必须具有高热导率,这就要求制备的金刚石薄膜纯净,缺陷少,面积大,同时还要求有较高的生长速率以降低生产成本。采用具有等离子体密度高、无放电电极污染、控制性好等优点的微波等离子体化学气相沉积(MPCVD)法,是工业上制备热沉金刚石的理想方法。MPCVD沉积装置不仅能沉积高纯度的金刚石膜,沉积速率也可以通过增大微波功率来提高。用5KW 微波功率的MPCVD,可以以10μm...

2022

05-15

随着半导体器件功率密度的不断攀升,对热管理材料热导率提出了更高要求,具有超高热导率的第四代封装材料金属/金刚石开始进入了人们的视野,产业化趋势明朗。近年来,以金刚石为代表的高性能热沉衬底材料,正朝着高散热性能、低热膨胀、高强韧、超薄等方向快速发展,有望突破国家重大战略需求如航天、电子通讯及器件等领域的技术发展中面临的高功率电子器件散热瓶颈问题。电子封装产业链结构尤其是宽禁带半导体器件、高功率...

2022

05-14

众所周知,大功率二极管泵浦固体激光器应用广泛,在工业加工领域主要有激光切割、打磨、焊接;在国产航空母舰、护卫舰、潜水艇等船舶的建造过程中,使用大功率激光技术对复杂形状的厚钢板进行切割焊接;军事领域主要应用在激光武器上,如激光导弹、激光扫雷战车、大功率激光炮;在科学研究、医疗手术、居家娱乐、生物化学、太空探索等领域,都具有极高的实用价值。但激光二极管泵浦的固体激光器的热效应问题严重影响了激光器...

2022

05-13

随着无线通信和雷达等系统的工作频率向毫米波频段扩展,传统半导体材料无法满足毫米波新兴系统对功率放大器件在输出功率、效率、工作带宽和热稳定性等方面的要求。而GaN 材料在工艺成熟度和制备成本上有更大的优势,GaN 功率器件和射频器件成为了雷达、电子战和第五代移动通信(5G)等系统在毫米波频段重要的功率放大器件。理论上,GaN 功率器件的输出功率密度可达40 W / mm 以上,但是由于现阶段因...
新闻中心
>行业动态


产品中心
>金刚石热沉片
>金刚石氮化镓
>氮化铝薄膜
>压电氮化铝薄膜

联系我们
>联系我们


E-mail:sales@csmc. tech Telephone:0086-13859969306
厦门总部:福建省厦门市集美区灌口大道253号
韩国分公司:Changchundoing Shinchon-ro 2nd floor
2108 ho Seodaemoon-gu Seoul, Korea
上海办事处:上海市嘉定区浏翔公路955号小美科技园5号楼407室

点击这里给我发消息